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Abstract. The ground state wavefunction of a t-component quantum system in one 
dimension interacting via the l / r L  potential is interpreted as the Boltzmann probability 
factor of a t-component log-gas. This allows predictions regarding the asymptotic behaviour 
of the ground state correlations and density matrix to be made. Using the results of an 
exact calculation of a two-component log-gas, exact results are obtained for the quantum 
system in the case t = 2. 

1. Introduction 

The Boltzmann factor for the classical one-component Coulomb gas with the logarithmic 
potential (log-gas) on the circle is given by 

where 

r = q 2 / k B T  (1.2) 

and A is constant. It was observed by Sutherland (1972) that cL0 is also the ground 
state wavefunction of the N-body Schrodinger equation with 

xk = L&/2T.  Note in the limit L +  a: the potential becomes V ( r )  = g / r 2 .  The wavefunc- 
tion is subject to periodic boundary conditions, and is defined to be positive in the 
region 0 x ,  x2 c . . . c x N  L,  the choice of sign of Go in other regions depending 
on the particle type-boson or fermion. The coupling constants r and g are related 
by the equation 

( 1.4) 

Exact results are available for the partition function of the one-component log-gas 
at all temperatures, and the n-particle correlations at three particular temperatures. 
This allows the wavefunction to be normalised for all values of g 3 -f (for g < - f the 
phenomenon of 'fall towards the centre' begins), and the n-particle correlations of the 
ground state wavefunction to be calculated when g =  -f, 0 and 4. Furthermore the 

g >  -1 r = 1 + J i  + 2 g ,  2.  
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density matrix was explicitly evaluated for fermions when g = 0, and for bosons when 
g = 4. Apart from the case g = 0, which corresponds to free fermions, these results 
marked the first explicit calculation of the correlation functions and density matrix of 
an interacting N-body quantum system. 

In this paper we further exploit the analogy between the two problems. In § 2 we 
collect together known results relevant to both the one-component log-gas and the 
quantum problem. It is shown how the asymptotic formulae in the quantum problem, 
for both the two-particle correlations and density matrix for bosons, can be deduced 
from the log-gas analogue. 

In § 3 the t-species analogue of the Hamiltonian (1.3) recently given by Krivnov 
and Ovchinnikov (1982) is considered. The ground state wavefunction is again interpret- 
able as the Boltzmann factor of a log-gas, this time the log-gas having t components. 
All analogues between the correlations and density matrix in the quantum problem, 
and distribution functions in the log-gas, discussed in § 2 for the one-component case, 
carry over to the multicomponent case. Here the asymptotic formulae thus obtained 
for the quantum system are new. 

Furthermore we can use some recently obtained exact results for the two-component 
log-gas (Forrester (1984a) to be referred to as I, and Forrester (1984b) to be referred 
to as 11) to provide some exact results for the quantum system when t = 2. We calculate 
the two-particle correlation functions, as well as the density matrix for one of the 
species in the case of bosons, at a special value of the coupling constant. 

We will for the majority of this paper use the language of log-gas statistical 
mechanics. 

2. The single species quantum system 

Here we are considering properties of the ground state wavefunction (1.1). 

2.1. Pair correlation functions 

The ground state pair correlation function, which is defined in terms of l1,%,1* and 
thus independent of the particle type, is identical to the pair correlation function p: 
of the one-component log-gas interacting at the temperature (1.2). 

From the general theory of classical Coulomb systems, we know p: must obey 
Jancovici's sum rule (Jancovici 1982, Forrester et a l  1983). In the present case this 
says the asymptotic expansion of p: must contain the term 

- i/r T 2 y 2 .  (2.1) 
Furthermore, it is expected that above a certain temperature this will be the leading 
term (Forrester et a l  1983). This result can be compared to the asymptotic form of 
the ground state pair correlations of general one-component, one-dimensional quantum 
fluids given by Haldane (198 1) 

Here 77 is known as the correlation exponent, and the A,,, are model dependent 
quantities. The correlation exponent is defined in terms of the compressibility (it 
should be noted Haldane denotes paplap  = K rather than the usual K - ' ) .  Furthermore 
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we point out that formula (2.2) only contains the leading-order non-oscillatory term, 
the leading-order oscillatory term of period l / p  etc (higher-order terms of these forms 
will be present in general). The zero-temperature equation of state for the Hamiltonian 
(1.1) is given by Sutherland (1971), so K and thus 7 can be calculated to give 

7) = 4 / r .  (2.3) 

Substituting (2.3) in (2.2) shows Haldane’s asymptotic formula is consistent with 
Jancovici’s sum rule. Furthermore for r < 2  we note the term (2.1) represents the 
leading-order behaviour. 

2.2. The density matrix for bosons 

We will use the symbol D to denote the density matrix rather than the usual p to avoid 
confusion with the distribution functions. For general one-dimensional, one- 
component quantum fluids Haldane (1981) gives the asymptotic formula 

where the B’s are model dependent quantities, and 7 is the same as in (2.2). For the 
Hamiltonian (1. l), when 7 is given by (2.3), the leading term of the expansion (2.4) 
can be deduced from a log-gas analogue. 

Recall that the density matrix is defined as 

where 
N 

Z 2  = n loL dx, $:, 
j = l  

$O(Y)= x2, * . . 9 X N - l  ,Y) 

and is given by (l . l) ,  with the sign specified in the paragraph subsequent to that 
equation. Note the density matrix is normalised so that D(0) = p. We can interpret 
D(y)  as a distribution function in the log-gas by noting 

N-1 

I =  I 
$ O ( Y ) $ O ( O )  = 4; n (Isin(.rr/L>(y - xJII sin(.rr/L>Xll)r/2 (2.6) 

where 4; is the Boltzmann factor for the one-component log-gas of ( N  - 1) particles 
at the temperature (1.2). If we now interpret the whole right-hand side of (2.6) as a 
log-gas at the temperature (1.2) the second term in (2.6) represents the Boltzmann 
factor for the interaction of the ( N  - 1) particles with a particle of charge 4/2 fixed at 
y and another particle of charge q / 2  fixed at the origin. We can now interpret the 
right-hand side of (2.6) as a Boltzmann factor of ( N  - 1) particles of charge q, and two 
particles of charge q/2, by multiplying by the term (~in(.rr/L)y1”~ which is the Boltzmann 
factor for the charge at the origin interacting with the charge at y. 

From the above interpretation of $o(y)$o(0) we see that 

is a distribution function in the log-gas of ( N  - 1) particles of charge q, with two 
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particles of charge q /2  as the test particles. In the thermodynamic limit we expect 
D(y)  to tend to a well behaved limit whereas 

J s in ( . i r /~ )y l~ '~ -  ( . i r y / ~ ) ~ ' ~ .  

Thus if we multiply both sides of the definition of D(y)  by 

( L /  7T)I"4) sin(rr/ L ) Y \ ~ ' ~ ,  

we have a quantity which is well behaved in the thermodynamic limit, and represents 
the distribution function in the log-gas described above. 

This interpretation allows us to predict the large separation behaviour of D(y) .  A 
properly normalised distribution function must, in the fluid state with a repulsive 
potential, equal zero at zero separation of the test particles and as the separation 
increases from zero assume non-zero values, tending to a positive constant as the 
separation of the particles tends to infinity. Hence we expect 

W Y )  - C/Yr I4 ,  asy+co, c > o ,  (2.7) 

which is precisely the leading-order term of (2.4) given by Haldane (since here 7 is 
given by (2.3)). 

3. The t-species quantum system 

In this section the t-species analogue of the Hamiltonian (1.3) is considered. Suppose 
we have a system consisting of Nk particles of mass mk, k = 1,2, . . . , t, with Hamiltonian 

The species with mass mk have coordinates denoted x ( ~ ) .  

for finite values of the potential) wavefunction 
Krivnov and Ovchinnikov (1982) show that the ground state (since it is nodeless 

r / m i  

,+$; = ( k =  fi I D " : ( x ( ~ ) )  I S k < / S  fl I D " ' ~ ; ' " I ( ~ ( ~ ) ,  x(/))) (3.2) 

where 

(3.3) 

(3.4) 

and 

r =  m:/keT,  (3.5) 
satisfies the Schrodinger equation with H given by (3.1) provided the coupling constants 
are suitably defined. The definition of r (3.5) is consistent with (1.2) if we choose 
q = m,. Also the sign of the wavefunction is determined as for (1.1). For given values 
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of the ratios ( m k / m l ) ,  k = 2 , .  . . , t, the coupling constants gk and gk, are uniquely 
determined by the single parameter r. We find we require 

Notice that r is a double valued function of the coupling constants-a feature attribu- 
table to the singularity at the origin of the l / r 2  potential. This point has been discussed 
by Sutherland (197 1)  from whose considerations we conclude the branch of the solution 
of (3 .6)  and ( 3 . 7 )  such that r is always positive should be chosen. Since there is only 
one independent coupling constant, g ,  say, this can be achieved by requiring 

Here our fundamental observation is that i,bo is the Boltzmann factor (excluding constant 
terms) of the t-component log-gas on the circle. The log-gas consists of Nk particles 
of charge mk, k = 1, . . . , t, interacting at the temperature given by (3 .5) .  We can now 
proceed as in 9 2 and use this analogy to write down asymptotic formulae for the 
correlation functions and density matrix of the t-component quantum problem. 

3.1. Correlation functions 

For t-component classical Coulomb systems Jancovici’s sum rule relates to the charge- 
charge correlation C:, which is defined in terms of the usual one- and  two-particle 
distributions by 

c : (y  - Y’ )  = i maPJ(Y - Y’)  + i i m,m,P%,p(Y - Y’).  ( 3 . 9 )  
, = I  = = I  p = l  

For the t-component system considered here Jancovici’s sum rule says (Jancovici 1982, 
Forrester et a l  19’83) the asymptotic expansion of C:(y) must contain the term 
-k,T/. lr2y2, and this will be the leading term for high enough temperatures. Thus the 
asymptotic expansion of CT(y)  for the ground state wavefunction ( 3 . 2 )  must contain 
the term 

-m: /r . i r2y2  (3 .10)  

and for r small enoggh this will be the leading term. 
Information regarding the period of oscillatory terms in the asymptotic expansion 

of the correlations in the t-component log-gas is also available. If we define the charge 
density 

(3.1 1) 

then by the considerations in I1 of the mixing properties of the log-gas it follows we 
would expect the leading-order oscillatory term in the asymptotic expansion of the 
correlations to have period l/aQ. Here U is the smallest positive real number such 
that umk is an integer, k = 1 , 2 , .  . . , t. For this to be possible we require the mk to be 
rational multiples of the same ‘unit’ charge. 

Also we have predictions for the small distance behaviour of the two-particle 
correlations in the t-component log-gas. Again by considering the mixing properties, 
it was concluded in I1 that the correlation p: , ,  would have its first and  maximum peak 
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at, to a good approximation, the distance 

(3.12) 

This feature would only be present at sufficiently low temperatures (high temperatures 
would destroy such ordering), which corresponds to the parameter r being sufficiently 
large. The actual temperature at which this feature persists would be dependent on 
the charge species. 

3.2. The density matrix for bosons 

In 9 2.2 we deduced that in the one-component case the density matrix for bosons was 
equivalent to a distribution function in the log-gas. The density matrix D(k)(Y) of 
species k (with mass mk assumed to be bosons) in the general t-species case admits a 
similar interpretation. We deduce 

l y l ( r / m : ) ( m 2  4 )D(k)(Y) (3.13) 

is a distribution function in the t-component log-gas with charge density (3.11) and 
two particles of charge mk/2 as the test particles. Thus arguing as in 0 2.2 we deduce 
the asymptotic behaviour 

C' D(k)(y) - y ( r / m : ) ( + / 4 ) *  asy+co, c '> 0. (3.14) 

The asymptotic formula (3.14) tells us immediately the singularity at the origin in 
k space of the momentum distribution function, given in terms of the density matrix by 

(3.15) n(p)(k) = 2 lo= D(,)(Y)(COS 2 v k )  dY. 

From the large y behaviour of D,,)(y) we conclude (see Lighthill (1958)) 

a # integer, 
I k, a = integer, 

(3.16) 

where a = (r/my)(m;/4) and A, A' are constants. Since a > 0 there is no macroscopic 
occupation of the zero momentum state. 

As with the ground state correlations, we can also predict the small separation 
behaviour of the density matrix. Applying the mixing considerations of the log-gas to 
the test particles in the distribution function (3.13), we conclude the distribution function 
(3.13) will to a good approximation have its first and maximum peak at 

(3.17) 

The log-gas distribution function analogue can also be used to predict the period 
of the leading-order oscillatory term in the asymptotic expansion of D(&). Again 
the mixing considerations of I1 tell us the leading-order oscillatory term will have 
period l / a Q  (with a and the restrictions on the mk defined in 9 3.1). 

3.3. Density matrix for fermions 

We have no log-gas analogue for fermions. The integrand of the integral defining the 
density matrix can assume negative values and is thus not interpretable as a Boltzmann 
factor. 
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4. Exact results for a particular two-species system 

The two-species log-gas, consisting of N I  particles of charge +q and N2 particles of 
charge +2q has been solved (I and 11) at the special value of the coupling constant 
q 2 / k , T =  1. From the results of 0 3 above, we can thus normalise the ground state 
wavefunction of the Hamiltonian (3.1), in the case t = 2 ,  m 2 / m l  = 2 ,  g l  = -4, g l 2 = O  
and g2 = 2, and also calculate the ground state correlations by using the log-gas analogue 
directly. We will also find it possible to calculate the density matrix in the case of 
species 2 when this species are bosons. 

Note that g 1 2  = 0 yet the ground state wavefunction (3.2) has factors corresponding 
to interaction between the species. The interpretation of this feature is that the two 
species have an infinite hard core, and are thus impenetrable. 

4.1. Normalisation of the wavefunction 

In the case of the Hamiltonian (3.1) specified above, the (un-normalised) ground state 
wavefunction is given by (3.2) with (m2/  m , )  = 2 and r = 1. Normalisation is achieved 
by requiring 

A' k = 1  h / = I  3 jLdx/* '+ i=  0 1 

where A is the normalisation constant. From the calculation of the partition function 
for the exactly solvable two-species log-gas specified above (I equation (2.16)) we have 

N l + N 2  N I  ! N2 ! ( N2 + N1/2) ! N2 

A-2 = (&) ( 1 6 ~ ) ~ 1 " + ~ 2 C  ( ~ ( l ) - f ) ~  
(2N2 + NI)! c / = I  

where the sum is over all combinations of {1,2, .  . . , N2 + N1/2} taken N2 at a time. 

4.2. nte ground state correlation functions 

From 0 3.1 above, we know the ground state correlations of the quantum system, and 
its log-gas analogue, are the same. Thus in the present case, we refer to I1 ( 0  3), where 
the correlations of the log-gas are given to obtain 

t 3  sin ~ y p t  
15=Jo1dt t 2 + 1 / v 2  . 
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Here v is the unique positive solution of the equation 

N , / ( N ,  + 2 ~ , )  = (tan-' v)/ v (4.6) 

and P = Q/m,  where Q, the charge density, is given by (3.1 1) with t = 2. 
It is verified in I that the charge-charge correlation satisfies Jancovici's sum rule. 

All oscillatory terms (and thus the leading-order one) have period l(p, +2p2). This is 
in agreement with our expectations stated in P 3.1 above, since a = m i .  Also in I1 it 
was shown, by plotting the correlations for small y ,  that to a good approximation the 
first and maximum peak occurs at a distance given by (3.12). 

4.3. Calculation of the density matrix for species 2 in the case of bosons 

In this case, the log-gas analogue given in 0 3.2 above is a distribution function within 
the two-species log-gas of NI particles of charge m ,  and ( N 2 -  1) particles of charge 
m2,  with two particles of charge 4m2 as the test particles. However here 5m2 = m ,  so 
this is (apart from a normalisation factor) the distribution function p,, , , , (y).  Taking 
into account the normalisations of D,,,(y) and p,,,,,(y) we readily find 

where p ~ , , , , ( y )  is given by (4.3). 
Since m2/mi = 2 and r = 1 we see immediately the expected asymptotic behaviour 

(3.14) is obeyed. Furthermore our expectations regarding the location of the first peak, 
and the period of oscillatory terms in the asymptotic expansion, are the same as for 
p,,,,,(y) and thus hold. Note in the limit p , + O  (and thus V - * C O )  we regain a one- 
component system of particles of mass 2mi with = 1, or what is the same system, 
particles of mass m, with r = 4. This is the system for which Sutherland (1972) evaluated 
the density matrix. After some simple analysis we regain his result 

D ( y ) = - /  1 
2rrpy -dz. sin z 

2TY 0 2 

From the expression for the density matrix (4.7) we can evaluate the momentum 
distribution function q 2 ) ( k )  defined by (3.15). For purposes of taking the cosine 
transform it is useful to use the representation of p,, , , , (y) given in I to write (4.7) in 
the form 

The integrations over y can now be performed by the use of tabulated integrals 
(Gradshteyn and Ryzhik 1965) to obtain 

-2v2p: 1 " ( t  - s)' log(( t + s)' - (2 k /  P)21 log(2klP) -- 
4T2V2 10 1-1 dl  ds s t ( l /v2+r?)( l /v2+s2)  H(,,(k) = - T 2 P 2  

(4.10) 
a (log( 1 + 1 / U') - log( 1 / v 2  + (2 k /  P)2)), ( W P ) <  1, 

( 2 k / P ) 2  1. 
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From (4.10) we obtain the asymptotic behaviour 

and 

(4.12) 

Equation (4.1 1) is in agreement with the expected behaviour (3.16) (since here mz/ m ,  = 2 
and r = 1 so that CY = 1). 
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